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As malignant diseases are responsible for high mortality rates invariably, there is presently a pressing need to
develop innovative medical diagnostic techniques due to the limitations of current approaches, including non-
invasiveness, inability to monitor real-time, and the associated high cost of the equipment. Specifically, breath
analysis has received a great deal of attention over the past two decades. Volatile organic compounds (VOCs) in
exhaled breath could reflect the metabolic and physiological processes of the human body. Thus the electronic
nose (E-nose) which comprises an array of gas sensors, signal acquisition, a pre-processing unit, and a pattern
recognition algorithm that mimics the human sense of smell, can diagnose illnesses by analyzing exhaled breath
fingerprints accurately, showing their irreplaceable features of non-invasive, real-time monitoring, quick diag-
nosis, and low cost. By combining the advantages of metal oxide semiconductor (MOS) gas sensors (fast-
responding, affordable, and highly sensitive), the preponderance of MOS E-nose is further enhanced. This article
focuses on metal oxide semiconductor gas sensors for detecting volatile organic compounds. The sensing principle
and modification methods of binary and ternary metal oxide sensing materials are reviewed. It also encompasses a
review of the metal oxide semiconductor electronic nose for detecting cancer and respiratory diseases.
1. Introduction

Early diagnosis of cancer can improve the chances of cure and sur-
vival time of patients appreciably. Among diverse approaches, breath
analysis has been extensively studied due to its unique advantages, such
as making it possible to quickly and painlessly diagnose diseases by
testing the change of volatile organic compounds (VOCs) biomarkers
contained in exhaled breath. VOCs are not only released from exhaled
breath but also from various body fluids of the human body (Urine,
Sweat) [1] while exhaled breath is the easiest to analyze [2]. Inert gases,
water vapor, nitrogen, oxygen, and carbon dioxide make up the majority
of human exhaled breath. Furthermore, exhaled breath also contains
inorganic VOCs like nitric oxide, ammonia, and carbon monoxide along
with organic VOCs such as ethane, acetone, and pentane. In 1971,
Pauling et al. [3] first found that human exhaled breath contained over
200 VOCs. To date, about 3000 VOCs have been discovered in human
breath [4]. Phillips et al. [5] used a combination of 22 VOCs as a
“fingerprint” for lung cancer, discovering significant quantitative dif-
ferences between the lung cancer and non-lung cancer groups. These
VOCs had a sensitivity of 100% for differentiating patients with stage I
lung cancer. By comparing the change of biomarkers in the exhaled
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breath which can reflect the metabolic status of human tissue cells,
identifying plenty of diseases such as asthma, lung cancer, ovarian can-
cer, gastric cancer, and diabetes become reality.

Gas chromatography-mass spectrometry (GC-MS) technology is
commonly utilized in breath analysis [6]. The sample is collected and
pre-concentrated before being injected into the gas chromatography. The
gas mixture will be separated and checked by gas chromatography and
then ionized and analyzed by the mass spectrometry module. Combining
the two methods provides a much higher accuracy and sensitivity, which
makes it a suitable method for detecting the VOC trace for breath anal-
ysis. Monedeiro et al. [7] used headspace gas chromatography–mass
spectrometry (HS-GC-MS) technology (a static headspace method) to
detect VOCs from human sweat, differentiating cancer patients from
controls successfully. Unlike GC-MS, proton transfer reaction mass
spectrometry (PTR-MS) measures VOCs rapidly by chemical ionization
reaction. In PTR-MS, H3Oþ ions generated by the ion source trigger a
proton transfer reaction with VOCs in the drift tube, and the resulting
products are analyzed using the mass spectrometer [8]. This method can
detect most of the VOCs and exclude interference from other gases in the
air. Selective ion flow tube mass spectrometry (SIFT-MS), like PTR-MS,
can detect compound isomers by employing various precursor ions
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Table 2
Exhaled breath markers of disease.

Disease Biomarker Technology Reference

Lung Cancer Benzaldehyde GC-Q-TOF/
MS

[32]
2-ethyl hexanol
2,4-decade-1-ol

Prostate cancer Hexanal HS-SPME-
GC-MS

[33]
2,5-Dimethylbenzaldehyde
Hexan-2-one
2,6-Dimethyl-6-hepten-2-ol

Breast Cancer Cyclotetrasiloxane GC-MS [34]
Tetradecane
2,7,10-trimethyl dodecane
2-hexyl-1-octanol

Gastric cancer 3-octanone HS-SPME-
GC-MS

[35]
Butanone

Chronic
obstructive
Pulmonary
disease

Acetone GC-MS [36]
1,2-pentadiene toluene
butyrolactone

Tuberculosis 1-methyl-1- 1,4-dimethyl-
cyclohexane，C4–C20 alkanes
monomethylated alkanes

GC-MS [37]

Novel
coronavirus

Acetaldehyde GC-IMS [38]
[39]Octanal

Acetone
Butanone
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(H3Oþ, O2
þ, and NOþ) [9]. In comparison to PTR-MS, the benefit of this

method is that the sample is directly analyzed using a “breath head”.
Meanwhile, these techniques have some limitations, including the need
for skilled professionals, the use of pricey instruments, the use of
cumbersome analytical equipment, and high measurement costs.

As a result, it is urgent to develop an instrument with real-time
analysis, user-friendly, portable, and non-invasive for early disease
diagnosis. The electronic nose (E-nose) resembles the human olfactory
system, including an array of gas sensors that react with the sample to
produce a smell print, which is used by pattern recognition algorithms for
classification. In 1961, Moncrieff [10] built the first machine olfactory
instrument. In 1964, Wilkens and Hatman reported an early E-nose [11].
This instrument worked through redox reactions of the gas on the elec-
trode. In 1965, Buck and Dravnieks et al. built E-noses by altering the
conductivity and adjusting the contact potential. Persaud and Dodd [12]
created a device for odor detection in 1982 by combining animal olfac-
tion with semiconductor sensors. The device responds to odors, but it
cannot recognize them since it doesn't have an odor memory. The solu-
tion is to expose it to multiple odors and locate the response in the
memory. At a conference in 1987, the word “electronic nose” was used
for the first time as a term [13]. For the past three decades, E-nose has
now frequently utilized in food testing, environmental industries [14],
agriculture, and medical diagnosis [15] due to its simplicity, speed, and
accuracy in detecting gas mixtures. E-noses can recognize specific
exhaled breath fingerprints with high accuracy, which makes them an
ideal candidate for medical diagnosis. Metal oxide semiconductor (MOS)
is a kind of metal oxide having semiconductor characteristics, which has
a wide bandgap. MOS gas sensors are cheap, small, sensitive, and easy to
fabricate, rendering them extensively employed in E-noses [16,17].

Unlike other reviews on detecting diseases in Table 1. This article
focuses on MOS E-noses for detecting volatile organic compounds. The
sensing principle and modification methods of binary and ternary metal
oxide sensing materials including morphology modification, doping, and
building heterojunctions are reviewed. This article also reviews the latest
applications of MOS E-noses for detecting cancer and respiratory diseases
and offers insights into potential avenues for enhancement and
improvement of MOS E-noses.

2. E-nose

2.1. Breath makers

VOCs include endogenous VOCs and exogenous VOCs. Changes in
endogenous VOCs can reflect metabolic and pathological processes in the
human body [22]. Exogenous VOCs are absorbed into the body thus
affecting the concentration of breath markers. Identifying appropriate
breath biomarkers is a fundamental requirement for effective breath
analysis. The selection of disease biomarkers necessitates a clear bio-
logical origin as well as sufficient clinical data to back it up [23]. The
imbalance between reactive oxygen species (ROS) production and
removal causes oxidative stress with many disease biomarkers produced
[24,25]. For example, polyunsaturated fatty acid peroxidation produces
alkanes, which have been linked to inflammatory and cancer-related
diseases [26]. Patients with asthma, chronic obstructive pulmonary
Table 1
E-noses for detecting disease.

E-nose model Target diseases Year Reference

Multivariate Respiratory diseases 2017 [18]
Multivariate Gastrointestinal Disease 2018 [19]
Multivariate Diabetes 2020 [20]
Multivariate Chronic obstructive pulmonary disease 2020 [21]
MOS-based Cancer 2024 This work

Respiratory diseases
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disease, and other lung diseases have more pentane and ethane in their
exhaled breath [27,28]. One of the most prevalent breath VOCs is
acetone. When the body does not produce enough insulin or cells are
insulin resistant, fat is used to produce energy. The body then produces
Ketogenesis, which further produces acetone. Its concentrations rise with
an increased fatty acid oxidation rate, which is linked to weight loss and
is used to monitor epilepsy and diabetes [29–31]. Table 2 shows some
typical breath biomarkers used to detect different diseases.

2.2. Structure and working principle

E-noses can identify and distinguish a wide range of airborne sub-
stances (including headspace volatiles from any source). An array of gas
sensors, a signal processing system, and a pattern recognition algorithm
make up a standard E-nose. It is similar to the human olfactory system
(Fig. 1). Receptor neurons receive stimuli from the environment, such as
odorous substances, and generate corresponding signals. These signals
are then transmitted to the brain for further processing and interpreta-
tion. Finally, neurons are able to distinguish between odors. The airbag
collection method, storing the subject's end-tidal breath samples in a
Tedlar bag [41], is the typical offline breath analysis method used for the
study. Utilizing online breath analysis is a better strategy because it
prevents contamination of the exhaled breath sample and allows for
real-time analysis. After bringing the sample into the E-nose through the
above methods, the gas undergoes a chemical reaction with the sensitive
material present in the sensor array, resulting in the conversion of the
chemical signal (such as gas type and concentration) into an electrical
signal. After signal processing (preprocessing, filter, exchange, and
feature extraction), the electrical signal is transformed into a digital
signal. The extracted feature vectors are inputted into suitable pattern
Methanol
Diabetes Ethanol PTR-TOF-

MS
[40]

Isopropanol
Dimethylsulfid
Isoprene
Pentanal

Notes: GC-MS: Gas chromatography-mobility spectrometry, GC-IMS: Gas
chromatography-ion mobility spectrometry, HS-SPME-GC-MS: Headspace solid-
phase microextraction coupled with gas chromatography-mass spectrometry,
GC-Q-TOF/MS: Gas chromatography quadrupole time of flight/mass spectrom-
etry, PTR-TOF-MS: Proton-transfer-reaction time-of-flight mass spectrometers.



Fig. 1. Typical signal collection, processing, and discrimination of an electronic nose system.
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recognition algorithms, which construct models by learning from sample
data with known odor patterns. These models are then used to classify
and recognize unknown samples based on their learned odor patterns
[42].
Table 3
Summarizes the advantages and disadvantages of gas sensors used in E-nose.

Sensor Advantage Disadvantage

MOS Low price, high detection
sensitivity, and fast response speed

Don't have a good selection, high-
energy consumption, and high
working temperature

CP High sensitivity and fast response
time, capable of detecting many
different types of gases

Vulnerable to environmental
influences, special calibration
required

MPSE Works in a wide range of
temperatures and moisture
conditions, highly precise

Sensitive to vibration, shock, and
mechanical Damage

CM Excellent sensitivity; quick
response time and precise detection

Demanding purity and handling of
samples, costly and subject to
moderation

QCM Highly sensitive; rapid response;
high accuracy and stability

More costly; may be susceptible to
environmental vibrations and
disturbances

Notes: MOS: Metal Oxide Semiconductor, CP: Conducting polymers, MPSE:
Mixed-potential type solid-state electrolyte, CM: Colorimetric, QCM: Quartz
Crystal Microbalance.
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2.2.1. Gas sensors
Different materials and types of sensors are used in E-noses. Table 3

lists the benefits and drawbacks of several commonly used sensors.
One of the most popular types of sensors is the MOS gas sensor.

Raspagliesi et al. [43] diagnosed ovarian cancer (OC) using an E-nose
comprised of ten MOS gas sensors over 251 subjects: 114 healthy people,
86 OC patients, and 51 benign patients. Different MOS sensors are sen-
sitive to various VOCs, improving the diagnostic capability of the E-nose.
The resistance signal of the baseline (R0-ohm) is subtracted from the
resistance signal of the sensor (R-ohm) and divided by the resistance
signal of the baseline (R0) to obtain the response of the sensor. Three
sensors displayed a significant increase in signal in the OC case. The
sensitivity and specificity of the K-Nearest Neighbor (K-NN) classification
model to distinguish between OC patients and controls were 98% and
95% respectively, and 89% and 86% for the distinguishing of OC pa-
tients, benign patients þ controls.

Due to their high selectivity at room temperature, conducting poly-
mer (CP) sensors are widely used in the electronic nose field. The
Cyranose-320 (C-320) electronic nose is made of 32 sensors, each of
which is covered in a variable carbon composite polymer film. Pier et al.
[44] used the C-320 E-nose to detect VOCs in urine headspace and suc-
cessfully distinguished bladder cancer patients and controls. However,
the CP sensor is sensitive to humidity and has poor repeatability.

Quartz Crystal Microbalance (QCM) sensors have low detection limits
and a quick response speed [45]. Zetola et al. [46] employed a QCM
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E-nose to diagnose pulmonary tuberculosis with 94.1% and 90% differ-
entiation sensitivity and specificity, respectively.

In comparison with other sensors, MOS gas sensors are more common
in E-noses owing to their low cost, high reliability, rapid response, and
ease of integration. MOS sensors are based on the principle that gas
molecules are adsorbed on the surface of a semiconductor to produce a
redox reaction that changes the resistance value. The oxidation behavior
of target gases is intricately dependent on the structural configuration,
morphological attributes, porosity characteristics, and operational tem-
perature of the host matrix material [47]. In Fig. 2, when the p-type
semiconductor NiO contacts air, oxygen molecules gain electrons from
the conduction band of NiO, resulting in hole-accumulation layers (HAL)
on the sensor surface. This will lower the resistance of the sensor. The
hydrogen then reacts with oxygen ions, releasing electrons back to NiO,
resulting in a decrease in HAL thickness and an increase in the resistance
of the sensor.

VOCs are present in low concentrations at breath-realistic conditions.
Changing the chemical composition, regulating the crystal structure, and
using nanoparticles can significantly improve the sensitivity and selec-
tivity of MOS gas sensors. Formaldehyde should be tested at 100pbb
when mixed with other exhaled compounds (ammonia, acetone). A sin-
gle MOS sensor hardly has sufficient sensitivity and selectivity. By doping
the sensors and forming them into an array, the average error in
measuring formaldehyde is only 9 ppb [48]. Specific sensitization mea-
sures for metal oxide sensing materials will be presented in Section 3.

2.2.2. Data analysis
It is challenging to improving the selectivity and specificity of indi-

vidual gas sensors, assembling multiple sensors into cross-reactive sensor
arrays and processing the signals with pattern recognition techniques can
effectively address this issue. The electronic nose is capable of simulta-
neous detection of multiple gases, where each sensor exhibits unique
responses to specific gases. Following the acquisition of these responses,
feature extraction techniques are applied, and subsequent data
Fig. 2. Schematics of hydrogen gas sens

77
dimensionality reduction is performed. Advanced data processing
methods are employed to compute relevant information, thereby
enhancing selectivity for specific gases. Pattern recognition (PR) is a
decision vector that classifies objects according to a pattern and char-
acterizes complex mixtures to identify individual components qualita-
tively and quantitatively. Principal Component Analysis (PCA), Linear
Discriminant Analysis (LDA), Artificial Neural Network (ANN), K Nearest
Neighbors (KNN), Support Vector Machines (SVM), and Random Forest
(RF) are commonly utilized [50]. PCA is an unsupervised method that
transforms a set of possibly correlated variables into a linearly uncorre-
lated set of variables by orthogonal transformation [51]. PCA serves as a
valuable tool for data analysis and feature extraction. It can be effectively
combined with other pattern recognition algorithms to enhance data
separability and improve model performance. LDA is employed to reduce
the dimensionality of data, thereby facilitating analysis and interpreta-
tion. By reducing the dimensions, LDA enables improved separation be-
tween different categories and enhances the accuracy of categorization.
KNN is a supervised learning method that can be applied to both classi-
fication and regression tasks. It offers the advantage of fast model
training. SVM relies on only a few critical sample points and is not
affected by a large number of non-critical samples. This makes SVM
robust to data noise and outliers and can effectively avoid overfitting
problems. RF is capable of making predictions and classifications by
integrating multiple decision trees and synthesizing their results to arrive
at a final decision. Polat et al. [52] used PCA to reduce a dataset with 57
features to 4 features in the detection of lung cancer. However, PCA
struggles with non-linear data [53]. The supervised method known as
artificial neural networks (ANNs) is widely applied. Given that they are
made up of extensive networks of nodes, they resemble biological neural
networks [54]. ANNs can process different types of input data by simu-
lating the neural system of the human brain. They also have intelligent
adaptive learning capabilities, making them suitable for use in nonlinear
problems. Van de Goor et al. [55] used an E-nose to diagnose recurrent
head and neck cancer. The ANNmodel successfully distinguished healthy
ing mechanism for NiO sensor [49].
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and diseased populations with 85% sensitivity. Table 4 shows some of the
algorithms used in E-noses. It can be seen that in E-noses detection, a
combination of algorithms is frequently used to achieve the best classi-
fication results.

3. Metal oxide sensing materials

The MOS gas sensor is the fundamental part of E-nose, therefore
enhancing the sensor's functionality is the key to raising E-nose's diag-
nostic precision. In this section, metal oxide sensing materials are clas-
sified into binary metal oxides and ternary metal oxides, which are
described according to the construction of unique morphologies, doping
of noble metals, and construction of heterojunctions.
3.1. Binary metal oxide

3.1.1. SnO2
SnO2 is an n-type metal oxide semiconductor with a 3.6 eV band gap.

Due to its excellent reactivity to VOCs in exhaled breath, SnO2 is a viable
gas sensor material for the E-nose.

Nanostructures have a large specific surface area, allowing for sig-
nificant improvements in the performance of sensing materials. Kuang
et al. [61] synthesized 3D hierarchical SnO2 nanostructures by hydro-
thermal method. Experimentally, the reaction rate was accelerated with
the addition of higher NaOH concentration, leading to a faster nucleation
rate and a smaller size of SnO2. Thus, sample S3 has the finest nanorods
and the highest density. Sample S3 exhibited twice the response of
samples S1 and S2 when tested for ethanol, responding to 50 ppm
ethanol for only 4 s at 150 mA with a recovery time of less than 2 s. The
reason for the good response of S3 is that its nanorods have a diameter of
15–20 nm, similar to the Debye screening length. The highest nanorod
density is seen in S3, thus boosting specific surface area and making it
easier for oxygen species to interchange. The fine grain size and 3D hi-
erarchical nanostructure can also be used to explain the good sensing
properties of this SnO2 material. Choi et al. [62] synthesized a bridge
nanosheet structure of SnO2 with a better response than conventional
nanosheets. This bridge structure introduces space under the membrane,
providing an additional site and sufficient time for the reaction. The SnO2
sensor thus fabricated showed excellent response to nonanal (Lung
Cancer marker) and has the potential to be used in E-nose to detect lung
cancer. This shows that creating nanostructures is a successful strategy
for improving sensor performance.

Doping can create oxygen vacancies and dislocations, providing more
active sites. Saasa et al. [63] synthesized a SnO2 sensor doped with 9 at%
Co by hydrothermal method, showing a maximum sensitivity of 45.8 for
5 ppm acetone (an exhaled breathmarker for diabetes). Additionally, this
sensor has good selectivity and a low detection limit for acetone (0.5
ppm). Cobalt doping increased the surface area of SnO2 by 210%,
reduced the pore size by 22%, and increased the response to acetone by
112%. The temperature ranged from 50, 100, 150, 200, and 250 �C for
Table 4
Data analysis method Applied in medical diagnosis electronic nose.

Diseases Sensor Data analysis method References

Diabetes Mellitus and Chronic
Kidney Disease

MOS PCA、SVM、HCA、
PLS

[56]

Chronic obstructive pulmonary
disease and Lung cancer

MOS KPCA、XGBoost、
AdaBoost、RF

[57]

Chronic liver disease QCM PLS-DA [58]
Colorectal cancer CP PCA、CDA [59]
Lung cancer CP LRA [60]

Notes: PCA: Principal Component Analysis, SVM: Support Vector Machines, LRA:
Logistic regression analysis, PLS: Partial Least Squares, KPCA: Kernel Principal
Component Analysis, CDA: Canonical Discriminant Analysis, XGBoost: Extreme
Gradient Boosting, AdaBoost: Adaptive Boostin, RF: Random Forest, HCA: Hi-
erarchical Cluster Analysis, PLS-DA: Partial Least Square Discriminant Analysis.
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the experiments. The best operating temperature including WO3–Co and
VO2–Co sensors was 100 �C, indicating that the Co doping reduced the
operating temperature of the sensors. Moreover, all of these sensors
responded highly to acetone at 100 �C. This demonstrates that adding Co
is a useful technique for increasing the n-type sensing materials' acetone
sensitivity. However, human exhalation is rich in water vapor. This
experiment showed that the response of the sensor to acetone was
reduced by more than half under conditions of humidity. The reason
behind this is that water vapor occupies the adsorption sites of the gas to
be measured and the adsorbed oxygen on the sensitive material is
reduced, resulting in a decrease in sensor performance. Van Duy et al.
[64] decorated SnO2 with Ag (1 nm) and Pt (2 nm) and the sensor
showed a good response (4.31) and response time (12 s) to 1 ppm NH3 at
250 �C operation. This sensor was tested repeatedly at several humidity
levels (0–90% RH) and the outcomes revealed no appreciable decrease in
sensor response, probably due to the high temperature promoting the
desorption of water vapor. Reducing the effect of humidity on mea-
surements when testing exhaled gases with an E-nose is still a problem.

The composite material enhances the performance of the sensor and
reduces sensitivity to moisture. Narjinary et al. [65] compounded
Multi-walled carbon nanotube (MWCNT) into SnO2, and the sensor
showed the highest response at 0.25 wt% of MWCNT (Fig. 3 (b)). The
sensor's performance had significantly enhanced (Fig. 3). MWCNT's large
surface area and excellent adsorption capacity enhanced the adsorption
capacity of SnO2. Moreover, the difference in the work function of
MWCNT and SnO2 facilitates the transfer of electrons. However, adding
too muchMWCNTmakes the number of electrons at the grain boundaries
increase, which reduces the performance of the sensor (Fig. 3 (b)). By
constructing a heterojunction, this sensor is capable of measuring 1 ppm
acetone effectively and is not sensitive to moisture. Graphene-based bi-
nary nanocomposites form tight electrical contacts through hetero-
structure, enabling electrical and electronic modifications to occur
simultaneously. Marappan et al. [66] prepared graphene oxide
(GO)/SnO2 binary nanocomposites with good response to acetone at
room temperature and visible light. In conclusion, SnO2-based gas sen-
sors can improve sensitivity through building nanostructures, doping,
loading, and constructing heterostructures. The content needs to be
controlled to obtain the optimal ratio when doping or compounding.
Lowering the optimal sensor operating temperature while reducing the
effect of moisture on the sensor remains a challenge for exhaled breath
detection using E-noses.

3.1.2. ZnO
ZnO is a typical n-type semiconductor with a wide band gap (3.37 eV)

and has already been widely used in MOS sensors [67].
Bian et al. [68] fabricated ZnO nanosensors with high performance to

acetone by electrospinning technique combined with calcination. ZnO
nanoparticles underwent two and 12 h of calcination, respectively. The
longer calcined ZnO had a multi-vacancy network structure and more
oxygen vacancies with a higher response than the former at 340 �C. In
addition, the sensor showed good stability with a nearly constant sensor
signal for 120 days. Zhang [69] et al. fabricated a ZnO sensor using the
peroxide thermal decomposition method, which is rich in oxygen va-
cancies. The sensor exhibits excellent response to 1 ppm NO2 at room
temperature under visible light illumination.

Systematic impurity doping can serve as a viable approach to reduce
size and enhance the electrical conductivity of materials, thereby
resulting in notable improvements in the performance of gas sensors
[70]. Yoo et al. [71] doped 1 at% Al, Co, and Cu into ZnO nanoparticles
(NP) via the hydrothermal method, and the Al-doped sensor responded
the most to acetone at 500 �C (11.8). It can be seen in Fig. 4 that Al
performed better as a dopant than Cu and Co because the Al-doped ZnO
nanoparticles possess dioxygen vacancies that create deep donor-level
defects [72]. Through the application of chemical spray pyrolysis,
Kathwate et al. [73] prepared Al-doped ZnO films. It was found that the
lattice parameters of the ZnO films gradually decreased with Al doping,



Fig. 3. (a) Response of SnO2 and SnO2-0.25% MWCNT sensors in 1 ppm acetone at 250�C. (b) Response of SnO2 sensor in 1 ppm acetone for different CNT loadings at
250�C. (c) Response of SnO2 and SnO2-0.25% MWCNT nanocomposite sensors in 1 ppm acetone at different temperatures. (d) Response of SnO2 and SnO2-0.25%
MWCNT sensors in different concentrations of acetone at 350�C [65].
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which indicated that Al was indeed doped into the lattice of ZnO. Al
caused significant changes in both strain and stress in the ZnO lattice. The
ZnO transformed from hexagonal to spherical particles and reached the
minimum average grain size (19.84 mm) when the Al content reached
3%. The sensor responds well to low concentrations of NH3 (25 ppm) at
100 �C. It is also superior to pure ZnO in terms of response and recovery
time. Sankar Ganesh et al. [74] doped ZnO with 6 wt% Al and also ob-
tained a sensor with a high response to NH3. This indicates that Al doping
does have a general improvement for ZnO sensors. Detection of NH3 in
human breath enables the diagnosis of kidney disease and asthma, and
the use of Al-doped ZnO is a favorable option.

Similar to SnO2, heterojunctions can significantly enhance ZnO
sensing performance. Zhang et al. [75] used the room-temperature liquid
phase method to composite 1–2 μmZnOwith GO. This three-dimensional
structure has heterojunctions with abundant cavities and a large surface
area, providing the gas with more pathways and reactive sites for diffu-
sion and adsorption, as well as lowering the operating temperature. It can
be seen in Fig. 5 that the GO/ZnO sensor has 5.9 times the response value
of ZnO at 180 �C, and the density functional theory confirms its excellent
selectivity for acetone. GO and ZnO form a p-n heterojunction with
different Fermi energy levels, leading to the transfer of holes and elec-
trons. This creates a space charge layer on the heterojunction. This causes
the energy band to bend at the junction to create a potential barrier,
hindering electron transport. Thus the initial resistance of the sensor
becomes higher and the response becomes more pronounced. Reduced
graphene oxide (rGO) is also a commonly used composite material. Gupta
79
et al. [76] prepared rGO-ZnO nanocomposites using 1 mg/mL of GO
precursor dispersion by in situ hydrothermal method. At room temper-
ature operating temperature, the rGO-ZnO sensor was not sensitive to
humidity and responded to NH3 significantly stronger than other gases.
The extremely small nanoparticle size provides more charge compensa-
tion sites for the nanocomposites, and rGO has excellent electrical con-
ductivity. This can be used to explain why pure ZnO cannot respond to
NH3 at room temperature, while rGO-ZnO can. However, when the rGO
exceeded the optimum value, the synergistic effect between the two
materials tended to favor p-type rGO, which led to a decrease in per-
formance. Zhang et al. [77] doped Au into nano-ZnO to construct
nanocomposites with a porous structure, which greatly enhanced the
response to benzene. The team then synthesized Au–ZnO and Exfoliated
WSe2 using a self-assembly technique to make a sensor that was highly
responsive to benzene, highly selective and reproducible, and capable of
operating at room temperature. This was attributed to the doping of Au
and the formation of heterojunctions. The issues of MOS sensors, such as
their high working temperatures, poor selectivity, and susceptibility to
humidity, are being resolved by obtaining smaller nanometer sizes,
doping other metals, and building heterogeneous structures. Finding the
best doping or composite substance and finding the optimal content is the
direction of future work.

3.1.3. TiO2
As an n-type semiconductor, TiO2 is commonly manufactured by

hydrothermal, electrospinning, and anodization methods to obtain



Fig. 4. (a) Sensing responses of the undoped and Co-, Cu-, and Al-doped ZnO NPs to different concentrations of acetone in the range of 0.01-10 ppm at the optimal
operating temperature of 500�C. (b)-(e) Variations in the responses of the undoped and Co-, Cu- and Al-doped ZnO NPs during the detection of acetone at different
acetone concentrations in the range of 0.01-10 ppm at 500�C. (f) Response time as a function of the acetone concentration (0.01-10 ppm) at 500�C. The inset shows the
estimation of the response time of all the samples upon exposure to 10 ppm acetone [71].
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structures in the form of tubes, rods, and fibers, resulting in sensors with
high sensitivity [78].

A key to assembling E-nose with MOS gas sensors is the miniaturi-
zation and integration of the sensors, which requires sensing materials
with high position controllability and uniformity. Kimura et al. [79]
fabricated TiO2 nanotube sensors on Si substrates using photolithography
and anodization. This sensor was 3 μm long and 100 μm wide, respec-
tively, and had a high sensitivity to H2. This shows that anodization is an
effective method to miniaturize the sensor. To use this sensor effectively
for electronic nose diagnosis, the team used Pt to modify TiO2 nanofilms
by atomic layer deposition technique [80]. The response of the sensor
modified with Pt was improved by 7 orders of magnitude compared to
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the original sensor for H2, and it also showed good response for CO. They
integrated multiple TiO2 sensors and combined mechanical learning and
neural networks to achieve predictions within 0.001% accuracy for
0.02% CO concentration [81]. This accuracy is sufficient to detect CO in
exhaled breath in cases of abnormal lung function. The nano-structuring
of TiO2, the sensitization with Pt, the reduction of sensor size using
anodic oxidation, and finally integrating multiple sensors and combining
them with machine algorithms to achieve accurate detection of specific
gases in gas mixtures is an effective research direction.

3.1.4. Others
NiO, In2O3, WO3, Al2O3, CuO, Fe2O3, and MoO2 have also been used



Fig. 5. (a) GO/ZnO gas sensor. (b) Response of pure ZnO and cactus-like GZ-8 based sensors to acetone (50 ppm) at different operating temperatures. (c) Response of
pure ZnO and cactus-like GZ-8 based sensors to 50 ppm different VOCs at 180�C. (d, e) Resistances cycles, response-recovery cycles, and fitted curves corresponding to
the response values of pure ZnO and cactus-like GZ-8 based sensors towards 0.1-200 ppm of acetone at 180�C. (g) Response/recovery curves of pure ZnO and cactus-
like GZ-8 based sensors in the presence of acetone (50 ppm) at 180�C. (h) Cyclic response/recovery curves of pure ZnO and cactus-like GZ-8 sensor to 50 ppm acetone
under different relative humidity [75].

Table 5
Binary sensitive material for the detection of exhaled breath markers.

Materials Synthesis route Target gas Gas
Concentration

Operating temp
(�C)

Response Response and Recovery Time
(s)

Reference

NiO Sol-gel NH3 0.4 ppm RT 91.2a 54/58 [82]
PdO/NiO Electrochemical deposition H2S 10 ppm 155 515.27a 50/7 [83]
NiO/ZnO Hydrothermal ethanol 100 ppm 350 54b – [84]
ZnO–SnS2 Hydrothermal H2S 30 ppm 180 0.712e 10/51 [85]
Ag–In2O3 Soft template isopropanol 1ppm 300 2.2d 12/175 [86]
ZnO–In2O3 Soft template NO2 100 ppb 75 805.2a 800/200 [87]
Pt–In2O3 Hydrothermal isoprene 5ppm 200 103.5b 124/204 [88]
Au-sputtered
WO3

Thermal oxidation H2S 5ppm 350 163d 240/1200 [89]

WO3–TiO2 Spin coating H2 1000 ppm RT 0.7821c 20/23 [90]
MXene/Co3O4 Hydrothermal formaldehyde 10 ppm RT 9.2a 83/5 [91]
Ga2O3/Al2O3 Hydrothermal and calcining NOX 100 ppm RT 0.582e – [92]
CuO Wet chemical acetaldehyde 100 ppm 180 4.18c – [93]
MoS2–CuO Precipitation acetone 10 ppm RT 16.21a 61/85 [94]
CuO/rGO Hydrothermal ethanol 100 ppm 175 10.54a 32/446 [95]
CuO/rGO Hydrothermal NO2 5ppm RT 4.008d 6.8/55.1 [96]
PdO–CuO Impregnation H2S 50 ppm 30 6.8b 1.8/4.1 [97]
α-Fe2O3 Uniform-micro spherical carbon

templates
acetone 25 ppm 350 98b 2/- [98]

Pt-α-Fe2O3 Solvothermal acetone 100 ppm 175 105b 2/355 [99]

Notes: a. Rg/Ra, b. Ra/Rg, c. (Rg-Ra)/Ra, d. (Ra-Rg)/Rg. e (Ra-Rg)/Ra.
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to detect gases in exhaled breath. Table 5 shows some of their existing
studies.

As shown in Table 5, the construction of nanoporous structures, the
doping of precious metals, and the use of composite materials to build
heterogeneous structures can effectively reduce the operating tempera-
ture of MOS sensors.

Sensors operating at high temperatures will respond and recover
quickly since the gas is involved in the reaction at a faster rate. However,
low-temperature sensors do not have high temperatures to assist the
reaction to proceed, resulting in longer response and recovery times.
Zhang et al. [100] fabricated an In2O3 nanowire sensor by the electro-
spinning method. It could precisely detect 10 ppb of NO2 at 25 �C. As the
temperature continues to increase, the equilibrium between adsorption
and desorption of the gas arrives earlier, which can lead to a lack of depth
in the reaction, reducing the response of the sensor. But this sensor had a
recovery time of up to 1000 s. The team then irradiated the sensor with
different intensities of visible light and showed that the stronger the
visible light, the shorter the recovery time of the sensor. However,
excessively strong light would make the sensor resistance change rapidly
Fig. 6. SEM characterizations of (a) MoS2, (b) Co-In2O3, (c) and (d) Co-In2O3/MoS
sectional EDS spectrum of Co-In2O3/MoS2 film [101].
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after being removed from the light, and cannot maintain a stable state.
Finally, 4.58 mW/cm2 was determined to be the optimal visible light
intensity to reduce the sensor recovery time to 20 s. Visible light irradi-
ation is an easy method to reduce the recovery time. Zhang et al. [101]
doped Co in In2O3/MoS2 composite for room temperature detection of
CO. Co–In2O3/MoS2 has a nanorod-like structure (Fig. 6), increasing the
surface area. Moreover, the doping of Co generates more oxygen va-
cancies in the material and forms impurity energy levels, which facili-
tates the transport of electrons and thus enhances the performance of the
sensor. The n-n type heterojunction formed among Co–In2O3 and MoS2
also contributes to the reaction.

Lei et al. [99] doped 2 at% Pt into α-Fe2O3, resulting in a 2.5-fold
improvement in sensor performance. Given that with the addition of
Pt, the sensitive material has a smaller band gap more conducive to
electron transport and generates a large number of oxygen vacancies.
This sensor had a very low detection limit, capable of accurately
detecting 20 ppb acetone, and still maintained good sensitivity at 90%
RH humidity, making it well suited for diabetes screening.

MoO2 has high electronic conductivity and thermal stability and has
2. (e) Cross-sectional image of Co-In2O3/MoS2 film on the substrate, (f) cross-
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been used to detect ethanol. Mehmood et al. [102] synthesized a
MoO2–Ni-GO composite. After being annealed at 400 �C, this material
responded with 105–1000 ppm ethanol at room temperature and showed
excellent selectivity. This was because of the increase in surface-adsorbed
oxygen and hydroxyl groups in the composite with increasing annealing
temperature, which promoted electron conduction and resulted in more
electrons being trapped in the composite and reduced the sensor resis-
tance. Moreover, the inherent resistance to the humidity of NiO made
this sensor operate sensitively even at 90% RH humidity conditions. In
addition, the sensor's selectivity is significantly influenced by the lowest
unoccupied molecule orbit (LUMO). The LUMO value of ethanol is only
0.13 eV, which is much lower than formaldehyde (0.22 eV), methanol
(0.2 eV), and acetone (0.21 eV), and this facilitates the electron transport
between the composite and ethanol, resulting in a better selectivity of the
sensor for ethanol.

3.2. Ternary metal oxide

Ternary metal oxide materials, consisting of two metal elements and
oxygen, have emerged as a recent research hotspot in the field of gas
sensors. This section focuses on the improvement of the sensing perfor-
mance of ternary metal oxides by topography control and Chemical
composition modification.

Hanh et al. [103] prepared three types of Zn2SnO4 in hollow octa-
hedra, hollow cubes, and nanoparticles to compare their sensing prop-
erties. The octahedral Zn2SnO4 has a hollow structure consisting of 20
nm thick nanoplates. The voids between adjacent nanoplates provide a
porous structure for the octahedral and increase the gas adsorption sites.
Although nanoparticles have the largest specific surface area (64.066
m2/g), their smallest pore size value (5.0 nm) limits the penetration of
gas molecules inside them. The octahedron has the largest pore size
(13.76 nm), providing sufficient diffusion space for gas molecules, so it
showed a higher response to acetone than nanoparticles. The octahedral
structure exhibited the highest response values in sensing tests for
acetone, methanol, NH3, H2, and CO, with a response of 63.93 for 125
ppm acetone at 450 �C and a theoretical detection limit of 0.67 ppb,
which is sufficient for the detection of diabetes. The response of the cubic
structure was higher than that of the octahedral structure in the detection
of ethanol, and the reason for this occurrence has not been determined. In
addition to porous structures, heterogeneous structures can also enhance
sensing performance. Wu et al. [104] synthesized CuFe2O4 hollow mi-
crospheres using a solvothermal method and annealing treatment pro-
cess. Compared to the response of 1.6 shown by CuFe2O4
nanoparticle-based sensors towards 20 ppm NH3 [105], this CuFe2O4
sensor exhibits a notably enhanced response of 4.0 towards 10 ppm NH3
at 100 �C. The enhanced response of the CuFe2O4 hollow microspheres
can be attributed to their significantly enlarged specific surface area and
layered structure, which facilitate an increased number of surface
adsorption sites and reaction zones. Ma et al. [106] constructed an n-n
heterojunction between Zn2SnO4 and SnO2 via hydrothermal method
and calcination and obtained Zn2SnO4/SnO2 with a hollow cubic struc-
ture. There are differences in the work functions of Zn2SnO4 and SnO2.
Before reaching Fermi level equilibrium, electrons in Zn2SnO4 continu-
ously migrate into SnO2, allowing the oxygen molecule to gain more
electrons. Additionally, a Schottky barrier with an additional depletion
layer is created, resulting in a greater shift in the sensor's resistance. This
sensor demonstrated excellent sensitivity and stability with a response of
11.12–100 ppm ethanol and the ability to detect 20 ppm acetone. The
construction of hollow nanostructures and heterojunctions are effective
measures to improve the performance of ternary metal oxide materials.

4. MOS E-nose for disease diagnosing

4.1. Cancer

Malignant tumors show a high morbidity and mortality rate in the
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twenty-first century. Cancer patients have the potential to be cured when
the cancer is detected early and treated appropriately. MOS E-noses can
fit the urgent need for mass and early cancer screening, allowing doctors
to detect and treat patients earlier, and thus increasing the survival rates
of patients.

Marzorati et al. [107] utilized a MOS E-nose to diagnose early-stage
lung cancer. The sensor array produced 45 features, and these features
were selected by sequential forward feature selection (SFFS) for specific
diagnosis along with the patient's clinical features. With a discrimination
sensitivity of 78% and 71%, respectively, the SVM classification model
successfully distinguished lung cancer stage 1 patients, lung cancer stage
2–3 patients, and controls. This experiment pointed out that the baseline
of the MOS sensor would change due to the environment and the drift of
the sensor, which would affect the accuracy of the E-nose. Kononov et al.
[108] installed an additional pump in the E-nose for cleaning the pipe-
line, allowing the study to obtain a baseline without signal drift. Three
gases (heptane, ethylbenzene, and 1-propano) that could be lung cancer
markers were used to optimize the measurement parameters. E-nose
showed a good linear response for all these gases. The accuracy of the
various classification models used (SVM, LDA, RF, KNN, and Logistic
regression) was greater than 90%. With a correct identification rate of
97.2%, the logistic regression model had the best generalization for
identifying lung cancer patients. Yan et al. [109] combined a-Fe2O3 and
ZnFe2O4 by constructing n-n heterojunction. As shown in Fig. 7, this
sensor showed a high response to 1 ppm n-butanol and exhibited good
selectivity. It was also insensitive to humidity. The heterojunction
structure can increase oxygen vacancies and produce more gas adsorp-
tion sites, which is expected to improve the performance of MOS E-noses.

To avoid other factors influencing VOCs, the control and patient
groups need to have similar characteristics. Waltman et al. [110] chose
urological patients and patients with prostatic hypertrophy (PE) as con-
trols because their characteristics were similar to those of patients with
prostate cancer (PCa). The ages of the subjects did not differ significantly.
The PCa group had higher levels of prostate specific antigen (PSA) and
significantly lower prostate volume. ANN model successfully differenti-
ated prostate cancer patients. However, the sample size for this study is
small and more data is needed to train the model. Taverna et al. [111]
selected 174 subjects (88 PCa patients, 86 controls) for diagnosis using a
MOS E-nose. Unlike the previous experiment which used exhaled breath
as a sample, this experiment used the subject's urine headspace as a
sample. This E-nose significantly differentiated the samples from the PCa
and control groups. RF model distinguished PCa patients with 82.1%
accuracy. This suggests that E-nose can discriminate against patients with
PCa.

Giro Benet et al. [112] first distinguished the Breast cancer (BC)
group from the control group with 92.31% accuracy using GC-MS tech-
niques and Convolutional Neural Networks (CNN) models to demon-
strate that their urine samples were significantly different. After training,
the accuracy of MOS E-nose in identifying BC increased from 58.3% to
75%. Interestingly, the high average molecular weight of 8-oxodG
(283.2407), one of the most reliable BC markers, may lead to its low
concentration in the urine headspace. This provides a direction for later
studies: improvements in heating methods and the sensitivity of gas
sensors may enhance the accuracy of E-noses.

In summary, MOS E-nose has sufficient sensitivity to identify changes
in VOCs in cancer patients. As the sample size increases, more data can be
used to train E-nose's classification model, which will significantly
improve the accuracy of E-nose.

4.2. Respiratory diseases

Van Velzen et al. [36] combined four E-noses, including a MOS
E-nose, to form an E-nose platform for diagnosing chronic obstructive
pulmonary disease (COPD). The thermolysis tubes and Tedlar bags were
used for sampling in the experiment. GC-MS was used to identify ten
COPD marker VOCs, including acetone, 1,2-pentadiene, toluene,



Fig. 7. (a) SEM images of FZFO-4; (b) Gas-sensing response curves to 1 ppm N-butanol; (c) Selectivity of the samples; (d) Responses of sensors at different RH to 10
ppm N-butanol [109].
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butyrolactone, and others. E-nose successfully distinguished COPD pa-
tients in various stages with over 70% accuracy. However, the differences
in VOCs found between patients with stable and worsening COPD in this
trial were different from a previous study. Pizzini et al. [113] concluded
that stable and deteriorating COPD could be distinguished by n-butane
and others. The differences in these studies were attributed to the lack of
standardization of experimental methods (design of study methods,
severity of COPD in selected patients). Most patients with COPD and lung
cancer have a smoking history, and smoking alters the VOCs in exhaled
breath [114,115]. V.A. et al. [57] used a MOS E-nose to differentiate
COPD from lung cancer patients. Over 70% of the testers had a history of
smoking, and all testers were instructed to avoid eating and smoking for
2 h before testing. As shown in Fig. 8, the response of the sensor array
showed significant differences between COPD patients and the healthy
group. The XGBoost algorithm used in this study outperformed AdaBoost
and Random Forest in terms of classification accuracy and avoided
overfitting. At the validation stage, this E-nose differentiated COPD pa-
tients with 76.67% accuracy.

Intubated and mechanically ventilated critically ill patients have an
80% probability of contracting ventilator associated pneumonia (VAP)
due to respiratory bacterial infections [116]. The MOS E-nose used by
Schnabel et al. [117] had a sensitivity of 95% to detect VAP, but the
specificity of this E-nose was only 38%. This was due to the mixing of
dead zone gas when the gas was collected into the Tedlar bag, resulting in
a low concentration of VOCs and an insufficient response of the MOS
sensors. Liao et al. [118] used an E-nose to diagnose VAP in intensive care
unit (ICU) patients. The MOS sensors in this E-nose were composed of
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reactive materials (ZnO2, WO3, etc.) and catalysts (gold, tungsten, etc.).
The E-nose was calibrated before use to confirm that the response curve
was within tolerance. The flow rate, humidity, and temperature were
controlled within a certain range during the test. Under these conditions,
SVM outperformed ANN in classification accuracy (92.08%). However,
due to its higher nonlinear mapping, ANN could surpass SVM as the
sample size increased. The E-nose is compact and convenient to be
installed in the system of ICU and is suitable for detecting VAP.

Tuberculosis (TB) diagnosis in remote areas has always been a tricky
problem. Mohamed et al. [119] utilized a MOS E-nose coupled with the
PCA technique to detect headspace volatiles in TB patients' blood, breath,
sputum, and urine. PCA clustering plots showed significant differences
for all four samples, especially for blood and urine samples. Ultimately,
the E-nose identified TB patients with an overall sensitivity of 98%.
Coronel Teixeira et al. [120] used a handheld E-nose to diagnose
tuberculosis. This subject included TB patients, asthma and COPD pa-
tients, and healthy people. Because of obesity, bronchitis, or antibiotics,
some subjects were misclassified. The sensitivity of the ANN model to
distinguish TB in the calibration stage reached 91%. This study was
conducted in a hospital setting. However the team thought factors such as
genetics and food could affect the smell print of TB patients in each re-
gion, so they conducted in-depth research on Paraguay's indigenous
population [121]. The results showed that the completed ANN model's
blind prediction specificity after training was 99%. In Hendrick's study,
the accuracy of the E-nose using ANN was also 94.87% [122]. Expensive
medical tests are impractical in remote areas. The E-nose can diagnose TB
with only 5 min of exhalation, which is a good means of triage.



Fig. 8. Sensor array response to (a) a healthy control; (b) a COPD patient group; COPD detection with XGBoost in validation phase (c) confusion matrix; (d) ROC
curve [57].
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E-noses show high accuracy in diagnosing lung diseases. Providing a
stable baseline, calibrating the E-nose, and increasing the number of
sensors can provide better diagnostic results.

5. Summary and outlook

In the design process of the electronic nose, high performance sensors
have been obtained through shape control, doping, and synthesis of
composite materials. These sensors are rigorously calibrated and tested
and then used to compose the electronic nose. E-noses consisting of MOS
gas sensors have been successfully used to detect cancer and respiratory
diseases. Current research has shown that the MOS E-nose provides rapid
and accurate screening with good medical sensitivity and specificity even
when patients do not have obvious symptoms. Some anticipated research
trends and directions include:

(1) The sensitivity of MOS sensors to exhaled VOCs has been signifi-
cantly improved, but the selectivity for specific gases requires in-
depth study. Nanotechnology can be used to control particle
properties, construct composite materials, and build hetero-
junctions to create synergistic effects, and significantly improve
the selectivity of MOS gas sensors. Investigating the principles of
the reaction process between gases and sensing materials can also
help investigate new ways to improve sensor selectivity.

(2) The classification capability of E-nose can be significantly
enhanced by boosting the feature extraction methods and classi-
fication model algorithm. In addition to the commonly used
manual feature extraction (extraction of time-domain or
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frequency-domain features), features extracted by neural net-
works (such as autoencoders and deep confidence networks) are
more distinguishable compared to traditional methods.

(3) Experiments on E-noses require a standardized test method,
including gas collection, requirements for patients to abstain from
food or smoke, etc., making the studies reproducible and com-
parable. And it must be tested with a larger sample size before
clinical mass application. In clinical use, E-noses also need to
overcome the effects of humidity, temperature, environmental
VOCs, etc.
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